
1

Pose Neural Fabrics Search
Sen Yang, Wankou Yang, Member, IEEE and Zhen Cui, Member, IEEE

Abstract—Neural Architecture Search (NAS) technologies have
emerged in many domains to jointly learn the architectures and
weights of the neural network. However, most existing NAS works
claim they are task-specific and focus only on optimizing a single
architecture to replace a human-designed neural network, in
fact, their search processes are almost independent of domain
knowledge of the tasks. In this paper, we propose Pose Neural
Fabrics Search (PoseNFS). We explore a new solution for NAS
and human pose estimation task: part-specific neural architecture
search, which can be seen as a variant of multi-task learning.
Firstly, we design a new neural architecture search space, Cell-
based Neural Fabric (CNF), to learn micro as well as macro
neural architecture using a differentiable search strategy. Then,
we view locating human keypoints as multiple disentangled
prediction sub-tasks, and then use prior knowledge of body
structure as guidance to search for multiple part-specific neural
architectures for different human parts. After search, all these
part-specific CNFs have distinct micro and macro architecture
parameters. The results show that such knowledge-guided NAS-
based architectures have obvious performance improvements to
a hand-designed part-based baseline model. The experiments on
MPII and MS-COCO datasets demonstrate that PoseNFS1 can
achieve comparable performance to some efficient and state-of-
the-art methods.

Index Terms—Human pose estimation, neural architecture
search, cell-based neural fabrics, micro and macro search space,
prior knowledge, part-specific NAS, vector representation

I. INTRODUCTION

NEURAL Architecture Search (NAS), the process of
jointly learning the architecture and weights of the neural

network [1]–[9], can play a potential role at designing efficient
network architectures automatically. Current NAS methods
mainly take image classification as basic task, and only search
for a micro “cell” to build a chain-like structure. However,
when applying NAS to dense (pixel-wise) prediction tasks
such as semantic segmentation and human pose estimation,
the micro search space is no longer able to generate more
complex architectures. Therefore, it become a necessity to
artificially design a macro search space allowing identifying
a hierarchical structure upon cells for these tasks. In addition,
most existing NAS works such as [1], [3], [9]–[11] optimize
a single architecture in the search space, and finally obtain
a so-called task-specific architecture to replace a human-
designed architecture in the pipeline. Such practice, in fact,
decouples the automating architecture engineering from the
characteristics of tasks, failing to take advantage of significant

Sen Yang and Wankou Yang are with the School of Automation of South-
east University, Nanjing 210096, China. E-mail: yangsenius@seu.edu.cn,
wkyang@seu.edu.cn. (Corresponding author: Wankou Yang.)

Zhen Cui is with the School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing, China. E-mail:
zhen.cui@njust.edu.cn.

1Code is available at https://github.com/yangsenius/PoseNFS

Part
RepresentationCell

Cell

Cell

Cell

Cell

Head-Shoulder-CNF

Shared
Feature
Pyramid

(Produced
by

Backbone)

Part
Representation

Cell

Cell

Cell

Cell

Left-Arm-Part-CNF

Part
Representation

Cell

Cell

Cell

Cell

Cell

Right-Arm-Part-CNF

Part
Representation

Cell

Cell

Cell

Cell

Hips-Part-CNF

Part
Representation

Cel

Cell

Cell

Cell

Cell

Legs-Part-CNF

Fig. 1. A schematic diagram of searched architectures: five part-specific
CNFs (Cell-based Neural Fabrics) are associated with different body parts
according to the prior body structure. They take as input the shared feature
pyramid produced from a common CNN backbone or a derived CNF. The
weighted operations combinations in the cells are also distinct in the part-
specific CNFs.

domain knowledge to guide the search process and achieve
the expected targets.

For human pose estimation task, we argue that the prior
knowledge of human body structure can help discover specific
neural architectures in a part-based and automatic way. Thus,
we propose a new paradigm: part specific neural architecture
search, to search multiple neural architectures for different
human parts with guide of prior knowledge, as shown in Fig. 1.

Naturally, the first step to introduce NAS into human pose
estimation is to construct an architecture search space that can
identify multi-scale, stacked or cascaded neural network. To
this end, we propose a general parameterized Cell-based Neu-
ral Fabric (CNF), a scalable topology structure to encode micro
and macro architecture parameters into cells. The discrete
search space is relaxed into continuous search space to make
it searchable by gradient descent. This design is motivated by
Convolutional Neural Fabrics [12] and DARTS [1], it can be
described as a neural fabric architecture woven by cells, as
shown in Fig. 2.

In addition, there exists an inconsistency gap between the
derived child network (sub-architecture) and the converged
parent network (super-network) in DARTS [1]. Many works
attempt to eliminate this bias such as SNAS-series works [10],
[11]. In our work, we avoid it in a direct and simple way. We
do not re-discretize the continuous architecture after searching,
which means that all operations are densely preserved with
macro and micro architecture parameters in both searching

https://github.com/yangsenius/PoseNFS

2

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Depth

Scale

Fig. 2. A schematic map of the structure of Cell-based Neural Fabric (CNF).
The neural fabric is woven by cells in different scales and layer depths. Black
arrow represents identity transformation; purple arrow represents reducing
spatial size and doubling the channels of feature maps; red arrow represents
increasing spatial size and halving the channels of feature maps.

and evaluation stage. In order to verify such a setting, we
test the performances of architectures randomly sampled from
the continuous parameter space. Furthermore, we explore
a simple yet effective method, gradient-based synchronous
optimization, as the major search strategy to reduce the cost
of time and computational budgets for the search process.

Designing the neural search space or search strategy is
just the beginning for NAS, we believe domain knowledge
can help NAS go further. For human pose estimation task,
the special human body structure information is significant
prior knowledge to be exploited. Current ConvNet-based hu-
man pose estimation methods [13]–[20] usually use FCN-
like architecture to predict keypoints heatmaps. The global
spatial relationship between all keypoints is implicitly learned
by shared convolutional blocks and a single linear prediction
head. Nevertheless, such learning methods may ignore the
explicit knowledge: the spatial distributions of keypoints might
be highly correlated in the short-range while weakly in the
long-range. Tang et al. [21] have found that some pairs of body
parts are weakly related by analyzing their mutual information,
and a sharing mechanism using the same network to learn
shared feature for all keypoints may cause negative transfer
between uncorrelated parts. They therefore view human pose
estimation as homogeneous multi-task learning (MTL) [22],
[23], and design a structure-shared part-based branching net-
work (PBN) to estimate related parts. Here we ask: since
human pose estimation can be viewed as multiple prediction
tasks, the internal characteristics of these tasks would be
different, are structure-shared branching networks really better
for multiple sub-tasks? Whether can NAS search for more
specific neural architectures to localize these disentangled
human parts?

As a matter of fact, such problems can be converted
into searching multiple task-specific neural architectures for
multiple sub-tasks. There also has been a new trend to explore
Multi-task Neural Architecture Search such as [24]–[26], due
to that MTL could improve generalization by leveraging the
domain-specific information contained in the training signals
of related tasks [22]. In this work, provided with the proposed
search space, we can search multiple architectures to achieve

multiple learning objectives in a single shot, by exploiting
simple prior knowledge as guidance. As a result, part-specific
CNFs with distinct micro and macro architecture parameters
are achieved to adapt to the characteristics of different sub-
tasks. As shown in Fig. 3, highly correlated keypoints are
grouped into the corresponding part representations that are
predicted by searchable CNFs (multi-head predictions). Then
each location of keypoint is inferred by the associated part
representation. Such NAS-based part-specific architectures ex-
tend the carefully designed message passing mechanism, hand-
designed branch or information fusion module [21], [27], [28]
to fuse feature information between related joints. Besides,
we replace scalar value by a vector in each pixel position of
heatmaps, because the scalar value representing the existing
probability of keypoints is still inadequate to encode local
feature. We use the length (`2 norm) of the vector to rep-
resent the existing score of the keypoint and vector space to
capture more local component information of the body part.
In summary, our main contributions are:
• We propose a novel micro and macro architecture search

space: parameterized Cell-based Neural Fabric (CNF).
• With simple prior knowledge as guidance, our method

automatically searches part-specific neural architectures
to localize disentangled body parts, which extends the
traditional part-based methods.

• Such part-specific neural architecture search can be seen
as a variant of multi-task learning. It is a novel NAS
paradigm as Multi-Task Neural Architecture Search for
human pose estimation task.

• The experiments show that NAS-based part-specific ar-
chitectures have obvious performance improvements to a
hand-designed part-based baseline model. And our mod-
els achieve comparable performances to some efficient
and state-of-the-art methods.

II. RELATED WORK

a) Neural Architecture Search: Our work is motivated by
convolutional neural fabrics [12] and neural architecture search
methods [1], [4], [8], [9]. Liu et al. [1] propose the continuous
relaxation for architecture representation to search architec-
tures using differentiable strategy. Chen et al. [4] adopt random
search to search Dense Prediction Cell architecture for dense
image prediction. Ghiasi et al. [3] use Reinforce Learning to
explore more connection possibilities in different scales of
feature pyramid network. Xie et al. [8] explore randomly wired
networks for image classification and proposed the concept
of network generator. Liu et al. [9] propose Auto-DeepLab,
searching for a hierarchical neural network as backbone to re-
place original human-designed network in a common pipeline
(DeepLab) for semantic segmentation. It aims to search a cell
structure and a better path in multiple branches. In contrast,
our architecture space construction method is one-step, unlike
the two-step construction scheme for architecture search space
in AutoDeepLab, the whole architecture at macro and micro
level is totally parameterized as each cell’s parameters and not
pruned into sparsely connected architecture. Our work also can
be viewed as Multi-task Neural Architecture Search. There are
similar works like [24]–[26].

3

BackBone ……

Part
representation

Cell

Cell

Cell

Cell

Cell

Cell

Searchable Neural Fabric

Cell

CellCell

Part
representation

Cell

Cell

Cell

Cell

Cell

Cell

Searchable Neural Fabric

Cell

CellCell

Feature
Pyramid

Input
Image

�⃗�! �⃗�"

𝑑 𝑑

𝑤#

ℎ#

Part representation

Fig. 3. Pose neural fabrics search framework. Left: Given an input image, feature pyramid representing multi-scale feature maps will be produced from backbone
network. Then there will be P CNFs receiving the same feature pyramid and predicting P part representations, here two CNFs shown for simplification. The
final cell in the highest scale produces the part representation. Dashed lines mean unused connections and cells. Mid: The whole body is divided into multiple
parts associated with keypoints. Right: For instance, right lower arm part representation is associated with the wrist and elbow keypoints. ~vi and ~vj mean
two d-dim vectors respectively for wrist and elbow keypoints at location (x, y) of part representation feature map, and it’s shape is 2× w

′ × h
′ × d.

b) Human pose estimation and part-based model: Top-
down [13], [16], [18]–[20], [29] and bottom-up [14], [30]–
[33] human pose estimation approaches have been proven
extremely successful in learning global or long-range depen-
dencies relationships of body pose. However, parts occlusions,
viewpoint variations, crowed scene, and background inter-
ference etc. are still tough problems. Compositional struc-
ture models or part-based models [21], [34]–[44] attempt
to overcome aforementioned problems by representing the
human body as a hierarchy of parts and subparts. Early
part-based models [42], [45], pictorial structure models [38]–
[40] and some of the current models [21], [27], [35], [46]–
[48] are usually based on hand-crafted feature (e.g. HOG,
SIFT), hand-designed convolutional neural networks or hand-
designed information fusion modules. Our method also ex-
ploits the compositionality of body pose to separately predict
related keypoints, but further develops it by employing NAS
to learn distinct CNFs for different keypoints groups.

c) Vector Representation: The vector in pixel method is
motivated by embedding and vector representation methods
[14], [15], [33], [49]–[51]. Newell et al. [33] propose asso-
ciative embedding to group body keypoints. Papandreou et al.
[49] use geometric embedding representation to predict offset
vectors of keypoints. Cao et al. [14] use part affinity vector
field to supervise the part prediction. In addition, Hinton et
al. [50] use matrix with extra scalar to represent an entity.
Sabour et al. [51] propose Activity Vector, its length can
represent existing probability and its orientation represents the
instantiation parameters. In this work, we view each type of
keypoint as a type of entity in the image and use activity
vectors to locate keypoints to estimate human pose.

III. POSE NEURAL FABRICS SEARCH

A. Overview

Based on top-down method, 2D human pose estimation
aims to locate all K keypoints coordinates of body joints(e.g.,

Operators

Concatenate

Data node

𝐂𝐞𝐥𝐥 𝐬,𝒍

𝛽$%&

𝛽'&

𝛽%/$
&

𝑰

𝒉𝟏

𝑶

𝒉𝑯

𝜶𝒔,𝒍

𝑂$
%,'()

𝑂$,'()

𝑂%$,'()

𝑂$,'

Identity

Reduce

Upsample

Fig. 4. An overview of inner structure of a cell in scale s and l layer. To simply
present the inner structure of cell, we set the number of hidden nodes H as
2. Actually, its number of hidden nodes can be 1 or more than 2, each hidden
node hH is densely connected from its previous nodes {h0, h1, ..., hH}.

shoulder, wrist, knee, etc) in a single pose. Let S =
{(xi, yi)|x, y ∈ R+, i = 1, 2, ...,K} denote the set consisting
of all keypoints coordinates. Considering human body skeleton
structures, we disentangle the whole body pose into P part
representations as P prediction sub-tasks. P subnetworks are
constructed from CNFs sharing backbone to predict related
keypoints subset s (s ⊆ S) whose element is associated
with the corresponding part. The vector in pixel method is
introduced to capture keypoint’s feature in a relaxed vector
space and the prediction of specified keypoint’s location is
determined by the location of vector ~v whose length is the
largest. The entire framework is shown in Fig. 3.

In Section III-B, III-C, III-F, we demonstrate how to design
and employ parameterized CNFs as the choice of subnetworks
and backbone. Then, we describe how to randomly sample
architectures and optimize the models by synchronous opti-
mization. In Section III-E, we describe what prior structures of
human body are employed to guide neural architecture search.
In Section III-D, we demonstrate how to utilize the vector
representation to estimate keypoints’ locations.

B. Neural Architecture Search Space

Micro structure. Cell is a repeatable unit across different
layers and scales of the whole architecture. Illustrated in

4

s
2

𝑠

2𝑠

𝑙𝑙 − 1 𝑙 + 1

1/4

1/8

1/16

1/32

CNF-backbone CNF-subnetwork

Fig. 5. An overview of the CNF neural search space. Left: The homogeneous local connectivity between cells in a neural fabric. Right: Examples of
constructing a CNF-backbone (red box) or a CNF-subnetwork (blue box) from CNF. Dashed lines mean unused connections and cells.

Fig. 4, it receives outputs from previous layer’s cells as its
single input node I and it has H nodes as it’s hidden states.
Each hidden node hj is connected by a directed edge with
each element of candidate nodes set {h0, h1, h2, ..., hj−1}
(h0 = I, j = 1, 2, ...,H). Continuous Relaxation [1] method is
adopted to represent each directed edge with mixed operations.
For each hj is computed by:

hj =

j−1∑
i=0

∑
o∈O

exp
(
α
(i,j)
o

)
∑
o′∈O exp

(
α
(i,j)
o′

)o(hi), (1)

where O is the set of candidate operations. We choose 6 types
of basic operations o, consisting of: zero, skip connection, 3×3
depthwise separable convolution, 3 × 3 dilated convolution
with 2 rate, 3× 3 average pooling, 3× 3 max pooling. α(i,j)

o

means the associated weight for each operation o ∈ O in
edge hi → hj . For a specified Cells,l in scale s and layer l
in CNF, the continuous search space at micro level is: αs,l ={
α
(i,j)
o |∀o ∈ O,∀j ∈ {1, 2, ...,H} ,∀i ∈ {0, 1, ..., j − 1}

}
,

αs,l ∈ R‖O‖×
H(H+1)

2 . All hidden nodes {h1, h2, ..., hH} are
concatenated together and reduced in channels by a 1 × 1
conv to achieve an independent output node Os,l.

Macro Structure. For Cells,l, it receives the sum of outputs
from cells in the previous layer: O2s,l−1 , O s

2 ,l−1 and Os,l−1.
They are associated with macro architecture parameters βs,l ={
βl2s, β

l
s, β

l
s
2

}
∈ R3, which are normalized to control different

information reception level from previous cells in different
scales. All βs,l in all cells of the fabric construct the macro
continuous search space. For each Cells,l, its I is computed
by:

I = h0 =
∑

(O,β)∈Zs,l

exp (β)∑
β′∈βs,l

exp (β′)
T (O), (2)

where Zs,l =
{

(O2s,l−1, β
l
2s), (Os,l−1, β

l
s), (O s

2 ,l−1, β
l
s
2
)
}

and T (·) is scale transformation operation. In particular,
T (O2s,l−1) is downsampling operation via Conv-BN-ReLU
mode with 2 stride (meanwhile doubling the channels of
data node), T (O s

2 ,l−1) is upsampling operation via bilinear
interpolation (meanwhile halving the channels of data node
by 1×1 conv) and T (Os,l−1) means identity transformation.

Parametric Form. In summary, we parameterize the form
of cell in the l-th layer and s-th scale of CNF in such a pattern:

Os,l = Cells,l
(
O2s,l−1, Os,l−1, O s

2 ,l−1;ws,l, αs,l, βs,l
)
, (3)

where ws,l represents the weights of all operations in each cell,
αs,l and βs,l encode architecture search space inside the cell.
The hyperparameter of each cell is θs,l = (H,C,O). H is the
number of hidden nodes in each cell. C is the channel factor
for each node to control the model capacity, i.e., the number
of channels of its data node is C× 1

s . O is the set of candidate
operations. This form also can be seen as a scalable topology
structure or a network generator [8], which can map from a
parameter space Θ to a space of neural network architectures
N , formulated as g : Θ 7−→ N .

C. Constructing Subnetworks or Backbone

Benefit from its local homogeneous connectivity pattern as
shown in the left of Fig. 5, cell-based fabric is very flexible
and easy to extend into different layers and scales for high
and low resource use cases. It is determined by a group of hy-
perparameters Θ = (L,

{
1/1, 1/2, ..., 1/2b

}
, H,C,O) where

L is total layers and 1/2b is the smallest scale. Illustrated
in Fig. 5, fabric backbone can be constructed by reserving
the first m layers and discarding the latter L − m layers to
produce feature pyramid in multiple scales. Likewise, fabric
subnetwork can be constructed by reserving the latter n layers
and discarding the first L−n layers to receive feature pyramid
from backbone. Note that our backbone is not restricted to the
proposed architecture, and we do not use 3×3 average pooling
and 3×3 max pooling as candidate operations for subnetworks
as they are empirically more suitable for extracting low-level
visual feature rather high-level feature.

Following common practice for pose estimation, the small-
est scale is set to 1/32. We use a two-layer convolutional stem
structure to firstly reduce the resolution to 1/4 scale, and con-
secutively weave the whole CNF 2. In order to achieve a higher
resolution feature map to locate keypoints’ coordinates, we just
use the final cell’s output in 1/4 scale as the part representation.

2For cells in first layer, they only receive the stem’s output. And for cells in
1/32 scale or 1/4 scale of its current layer, it may have only have two outputs
from previous cells. In this case, we will copy one of candidate inputs.

5

Finally, we use P subnetworks (multi-head) sharing backbone
to produce P part representations, as shown in Fig. 3. Thus, the
local information and pairwise relationships between highly
correlated keypoints are combined in each part representation
and predicted by each subnetwork. The global information and
constraint relationships among all parts are implicitly learned
by the shared feature and predicted by the backbone. The long-
range and short-range constraint relationships of the human
pose are enforced by the whole architecture in an end-to-end
learning method.

D. Body Part Representation with Vector in Pixel

Based on the top-down method of pose estimation, we
estimate human pose with single person proposal. Given a
input image I ∈ RH×W×3 centered at a person proposal, there
will be P part representations T1, T2, ..., TP to be predicted.
Let Tp ∈ RJ×h

′
×w

′
×d denote its p-th body part representation,

where J is the number of keypoints belonging to this part
(see the assignment in Tab I), i.e. a part what we mean here
may associate several keypoints. h

′
and w

′
are the height and

width of part representation; in our down-sampling setting,
h

′
/H = w

′
/W = 1/4. d is the dimension of vector in each

pixel position. For the i-th keypoints of Tp, vector in position
(x, y) is denoted as ~vi,x,y = T ip (x, y) ∈ Rd, simplified as ~v.
Note that the dimension d of vector is set to 8 by default and
choice for dimension is discussed in Section IV .

We relax scalar value into a latent vector as keypoint entity
in each image pixel, expecting it to implicitly capture the
redundant and local feature information around the keypoint
position, please see more explanation in Appendix A.

Besides inherent to the characteristics of encoding locations,
~v can represent existing probability of keypoints by using
Squashing Function fS(·) [51] to normalize its `2 norm to
[0, 1). Formally, for i-th keypoint of p-th part, the non-linear
Squash function will compute the squashed vector ~vs in each
position (x, y) of T ip by:

~vs =
‖~v‖2

1 + ‖~v‖2
~v

‖~v‖
, (4)

‖~vs‖ = fS(~v) =
‖~v‖2

1 + ‖~v‖2
, (5)

where ‖~vs‖ exactly represents i-th keypoint’s existing score
in position (x, y). In inference, the position (x̄, ȳ) of the
longest (max-norm) ~v will be regarded as keypoint location.
Predicted score maps are collected from all part presentations.
Commonly, groundtruth score map Hgt

k is generated from
the groundtruth of k−th keypoint’s position by applying 2D
Gaussian with deviation of σ where the peak value equals
1 and σ controls the spread of the peak. Train loss Ltrain
is computed by Mean Square Error (MSE) between the pre-
dicted score maps and groundtruth score maps for all P part
representations.

Note that the i-th keypoint of the part Tp is some type of
all keypoints, and several parts may contain the same type
of keypoint, e.g. elbow maybe fall into the upper arm part
and the lower arm part. Thus we make a indicator function

1 (k, p, i) equal 1 if the local index i-th keypoint of the part
Tp is the global index k-th type of all keypoints otherwise 0.
And the final position (x̄, ȳ) will be inferred by the prediction
summed from these parts (same effect by averaging). We
finally formulate the training loss as:

Ltrain =
1

K

K∑
k=1

∑
x

∑
y

‖Ĥk (x, y)−Hgt
k (x, y) ‖22, (6)

Ĥk (x, y) =
∑
p,i

fS
(
T ip (x, y)

)
· 1 (k, p, i) , (7)

where Ĥk is the prediction map for each keypoint, (x, y) is
each location of T ip, Ĥk and Hgt

k . In practice, we will mask
out the keypoints without position annotation in the training
process.

E. Prior Knowledge of human body structure

The intuition behind this work is that using part-specific
neural networks to separately capture each pairwise spatial
relationship in local part is possibly better than using a shared
neural network to model the global relationship. Therefore,
we consider the human body structures and adopt four types
of grouping strategy to make comparison. Specially, P = 1
means that we model long-range dependencies relationships of
pose and global relationship of all joints is learned by a shared
neural network. P = 3 means that body pose is predefined into
3 parts associated with 3 CNFs: head part, upper limb part and
lower limb part. P = 8 means that body pose is predefined
into 8 parts associated with 8 CNFs: head-shoulder, left upper
arm, left lower arm, right upper arm, right lower arm, thigh,
left lower leg and right lower leg. In addition, we also adopt
the data-driven grouping strategy of [21] by setting P = 5:
head-shoulder, left lower arm, right lower arm, thigh, lower
limb part. In Tab I, all skeleton keypoints are associated with
the corresponding part according to the prior body structure.3

F. Optimization

One-shot Search and Part-specific architectures for
Different Parts. Given a hyperparameter Θ for a CNF, the
weights wo = {ws,l} and architecture αo = {αs,l} , βo =
{βs,l} are optimized. Following the principle of one-shot
architecture search [6], we assume that αs,l share same
weights across a single CNF and βs,l is cell-wise in each CNF.
Supposing that there are P CNFs, their weights of operations
are w = {w0, ..., wP } and the total architecture parameters
are α = {α1, ..., αP } , β = {β1, ..., βP }. We search for
part-specific CNF to adapt each prediction sub-task, which
means that the architecture parameters α1, ..., αP are totally
distinct and so are β1, ..., βP . In the Section IV-B0b, we make
contrastive experiments to study the differences on different
keypoints groups strategies.

3For MPII [52] dataset, we set indices of head top, upper neck, thorax,
l-shoulder, r-shoulder, l-elbow, r-elbow, l-wrist, r-wrist, l-hip, r-hip, l-knee,
r-knee, l-ankle, r-ankle, pelvis keypoints to 0-15 orderly. For COCO [53]
dataset, we set indices of nose, l-eye, r-eye, l-ear, r-ear, l-shoulder, r-shoulder,
l-elbow, r-elbow, l-wrist, r-wrist, l-hip, r-hip, l-knee, r-knee, l-ankle and r-ankle
to 0-16 orderly.

6

TABLE I
ACCORDING TO THE PRIOR KNOWLEDGE OF HUMAN BODY STRUCTURE,

THERE ARE DIFFERENT GROUPING TYPES OF BODY PART
REPRESENTATIONS.

Representation Mode Group Name Index
MPII COCO

P = 1 all keypoints 0-15 0-16

P = 3
head part 0-2 0-4

upper limb part 3-8 5-10
lower limb part 9-15 11-16

P = 5

head-shoulder 0-4 0-6
left lower arm 5,7 7,9

right lower arm 6,8 8,10
thigh 9,10,15 11,12

lower limb part 11-14 13-16

P = 8

head-shoulder 0-4 0-6
left upper arm 3,5 5,7
left lower arm 5,7 7,9

right upper arm 4,6 6,8
right lower arm 6,8 8,10

thigh 9-12,15 11-14
left lower leg 11,13 13,15

right lower leg 12,14 14,16

Random Sampling. Random search can be seen as a pow-
erful baseline for neural architecture search or hyperparameter
optimization [8], [54], [55]. It is conducted in [1] as well
and has a competitive result compared with the gradient-based
method. In this work, we randomly initialize values of α, β
by standard normal distribution and make them fixed in the
whole training process. From another point of view, this also
can be viewed as a stochastic network generator like [8]. The
sampled architecture parameters make no assumption about
the structures, and only the weights of neural networks are
optimized. Therefore, we conduct it to validate the design
of CNF, each random experiment also can represent the
performance of CNF without any neural architecture search
strategies.

Synchronous Optimization. In DARTS [1], the architec-
ture search problem is regarded as a bilevel optimization
problem. An extra subset val of original train set is held out
serving as performance validation to produce the gradient w.r.t.
architecture parameters α, β excluding the weights w. How-
ever, the training of the second-order gradient-based method
is still time-consuming and restricted by GPU memory due to
the high resolution intermediate representation for pose esti-
mation. Moreover, the training for parent continuous network
and the derived net are inconsistent in DARTS, final pruned
network needs to be trained again with all training samples.
There are works attempting to eliminate this problem, such
as SNAS [10] introducing Gumbel-Softmax trick. Instead, we
explore a more simple way as our major optimization strategy,
benefit from the parametric form of cell. The α and β are
registered to model’s parameters, synchronously optimized
with the weights w, i.e. the w, α and β are updated by
∇w,α,βLtrain in a single step of gradient descent. Without
extra validation phase, the final continuous α, β and the
weights w have seen all training samples, thus it do not need
to be pruned into discrete architecture by argmax operation
and trained again from scratch.

IV. EXPERIMENTS

A series of experiments have been conducted on two
datasets MPII Human Pose Dataset [52] and COCO Keypoint
[53]. In Section IV-A and Section IV-B, we show the imple-
mentation details and ablation study for the effectiveness of
the purposed optimization strategies, part-based pose repre-
sentation and the vector in pixel method. Then we compare
our model with a part-based baseline model and an efficient
light-weight model, in Section IV-C. Finally, in Section IV-D,
we present the results compared with the state-of-the-art.

A. Implementation Details

As for most subnetworks in ablation study, we set C=10
and total final layers is 3 (discarding first 3 layers of CNF
architecture with L = 6), and the total number of cells is 6 as
a basic configuration. Backbone with fabric can be constructed
as described in Section III-C. To make fair comparison with
methods using model pretrained on ImageNet [56], we take
Fabric-1, Fabric-2, Fabric-3, pretrained Mobilenet-V2 [57],
ResNet-50 [58] and HRNet-W32-Stem-Stage3 [20] feature
blocks (5.8M, 6.8M, 10.5M, 1.3M, 23.5M, 8.1M parameters
respectively) as choices for backbone to provide feature pyra-
mid to subnetworks, see configuration details in Appendix B-A
and B-B.

We implement our work by PyTorch [59] and each ex-
periment is conducted on a single NVIDIA Titan Xp GPU.
Training epoch is 200 and batchsize is set to 24 (not fixed).
We use Adam [60] optimizer to update the weights and
architecture parameters with 0.001 initial learning rate, decay
at epoch 90, 120, 150 with 0.25 factor by default. Data
augmentation strategies are used with random rotation range
in [−45◦, 45◦], random scale range in [0.7, 1.3] and random
flipping with 0.5 probability. Flip test is used in inference. In
practice, one quarter offset from the peak to the secondary
peak is introduced to reduce the quantization error. Strategies
mentioned above are adopted in all ablation experiments.

B. Ablation Study

Dataset and Evaluation. We conduct ablation study on
MPII Human Pose Dataset [52] which is a benchmark for
evaluation of pose estimation. The dataset consist of around
25K images containing over 40K people with annotated body
joints. All models in ablation study experiments are trained on
a subset MPII training set and evaluate on a held validation
set of 2958 images following [19]. The standard PCKh metric
(head-normalized probability of correct keypoint) is used for
MPII. PCKh@0.5 means that a predicted joint is correct if
its position is within 50% of the length groudtruth head box
from its groundtruth location. Evaluation procedure reports the
PCKh@0.5 of head, shoulder, elbow, wrist, hip, knee, ankle,
mean PCKh@0.5 and mean PCKh@0.1.

a) Optimization Strategies: For random search strategy,
we conduct 5 experiments with different pseudo random seeds,
each experiment costs 0.8 days for a single GPU. Result shows
that completely random architecture parameters can perform
well. As shown in Tab II, synchronous optimization is effec-
tive as well as random search under the same configuration

7

TABLE II
OPTIMIZATION STRATEGIES (SEARCH METHOD). WE CHOOSE

MOBILENET-V2 AS THE BACKBONE OF MODEL.
P = 3, H = 1, C = 10, d = 8, EACH SUBNETWORK HAS SIX CELLS AND

TOTAL PARAMETERS OF MODEL IS 3.3M, THE MADDS OF MODEL
INFERENCE COMPLEXITY FOR SINGLE INPUT SAMPLE IS 1.2 GFLOPS.

Search Method Search Time Mean Mean
(search strategy) (GPU days) (PCKh@0.5) (PCKh@0.1)

Random 0.8 87.1±0.2 35.2±0.4
First-order gradient-based 0.9 87.1 34.7

Synchronous gradient-based 0.8 87.0 34.6

TABLE III
BODY PART REPRESENTATION MODES. WE CHOOSE MOBILENET-V2 AS
THE BACKBONE OF MODEL. H = 1, C = 10, d = 8, EACH SUBNETWORK

HAS SIX CELLS.

Representation Mode Mean(PCKh@0.5) Mean(PCKh@0.1)
P = 1 86.4 33.4
P = 3 87.0 34.6
P = 5 87.1 35.1
P = 8 87.3 35.6

and search time. We observe that the best result of ran-
dom initialization for architecture surpasses the synchronous
optimization, this actually reveals two points: 1) the search
space design has more significant impact on the performance
of neural network; 2) the parameter initialization becomes
important when not leveraging NAS to the proposed CNF
structure. In addition, we implement the first-order gradient-
based optimization method according to the official code4 of
DARTS [1] for comparison. We hold out half of MPII training
data as validation for performance estimation of architecture.
Another Adam optimizer is used to update α, β with 0.003
learning rate and 0.001 weight decay, discrete architecture is
not derived from continuous architecture for full training. Note
that we can not theoretically prove the found architecture is the
optimal one, but we find that there is almost no performance
difference between the synchronous optimization and the first-
order gradient-based optimization proposed by DARTS, which

4https://github.com/quark0/darts/blob/master/cnn/architect.py

TABLE IV
DIMENSION CHOICES FOR VECTOR IN PIXEL. WE CHOOSE

MOBILENET-V2 AS THE BACKBONE OF MODEL. P = 3, H = 1, C = 10,
EACH SUBNETWORK HAS SIX CELLS AND TOTAL PARAMETERS OF MODEL
IS 3.3M, THE MADDS (FLOPS) OF MODEL INFERENCE COMPLEXITY FOR
SINGLE INPUT SAMPLE IS 1.2 GFLOPS. † IS THE RESULT ACHIEVED BY
RUNNING THE OFFICIAL CODE ON OUR MACHINE, THE OFFICIAL IS 90.3.

Dimension Mean(PCKh@0.5) Mean(PCKh@0.1) #Params #Madds(FLOPs)
d = 1(scalar) 86.8 33.5 3.3M 1.1G

d = 4 86.9 34.9 3.3M 1.1G
d = 8 87.0 34.6 3.3M 1.2G
d = 16 86.8 34.9 3.3M 1.2G

SimpleBaseline [19] 88.5 33.9 34.0M 12.0G
+ vector(8-dim) 88.7 34.2 34.0M 12.1G
HRNet [20] 90.1† 37.7 28.5M 9.5G

+ vector(8-dim) 90.2 38.1 28.5M 9.6G

0 25 50 75 100 125 150 175 200
Epoch

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

Av
er

ag
e

tra
in

 lo
ss

 p
er

 e
po

ch

w/o Vector in Pixel
w/ Vector in Pixel (d=4)
w/ Vector in Pixel (d=8)
w/ Vector in Pixel (d=16)

Fig. 6. Train losses of experiments w and w/o vector in pixel method. Detailed
configurations are described in Tab IV. The sudden drop at epoch 90 is caused
by learning rate decay.

demonstrates its effectiveness compared with the first-order
optimization.

b) Body Part Representation Modes: We study these
four modes predefined by the prior knowledge and results are
shown in Tab III. We choose MobileNet-v2 [57] feature blocks
as backbone. We find that multiple part presentations predicted
by part-specific CNFs surpasses global whole-body represen-
tation predicted by a shared CNF. 8 part representations mode
achieve 1% accuracy increase than whole-body representation
and mode with P = 3 is a trade-off between performance and
model capacity.

c) Dimension Choices for Vector in Pixel: We study the
effect of choice for dimension d of the vector on performance
by setting d with 1, 4, 8, 16. d = 1 represents the common
heatmap regression approach without vector in pixel. We find
that 8-dim vector has a better performance shown in Tab IV.
To validate the generalization of 8-dim vector representation
method, we apply it to SimpleBaseline 5 [19] and HRNet
6 [20]. We find that this 8-dim vector representation is ef-
fective in these two frameworks. It gains 0.23% increase in
PCKh@0.5 and 0.88% increase in PCKh@0.1 than Simple-
Baseline official results with little increase of complexity and
1.06% increase in PCKh@0.1 than HRNet official results.
Although we find that there is no obvious boost on PCKh@0.5
metric and a little in PCKh@0.1 metric, from Fig. 6 we
observe that the losses of training with vector in pixel method
converge faster, which implies the fitting between training data
and label is more robust.

C. Comparison with Baseline Model and Efficient Model

a) Combination and Comparison with Baseline Model:
[21] conducts part-specific feature learning for pose estimation
as well. It uses a part-based branch network (PBN) that has a
shared representation extracted by a Hourglass Network and is
stacked by 8 times. It represents our main competitor. For the
sake of fairness, we follow the [21] to construct the Branchnet

5https://github.com/microsoft/human-pose-estimation.pytorch
6https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

8

TABLE V
COMPARISONS OF PERFORMANCE, MODEL PARAMETERS AND INFERENCE COMPLEXITY ON MPII TEST SET. THE BACKBONES OF OURS-A AND OURS-B

MODELS ARE MOBILENET-V2 (1.3M) AND HRNET-W32-STEM∼STAGE3 (8.1M).

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total #Params #FLOPs
Tompson et al. [46] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 - -

Belagiannis & Zisserman [34] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1 - -
Wei et al. [13] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 - -

Insafutdinov et al. [30] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 42.6M 41.2G
Bulat&Tzimiropoulos [61] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 - -

Newell et al. [62] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 25.1M 19.1G
Xiao et al. [19] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5 68.6M 20.9G
Tang et al. [35] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3 15.5M 33.6G

FPD (Knowledge Distillation) [63] 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1 3M 9G
Ours-a 97.9 95.6 90.7 86.5 89.8 86.0 81.5 90.2 5.2M 4.6G
Ours-b 98.2 95.9 91.5 87.6 90.1 87.3 83.2 91.0 16.4M 9.4G

TABLE VI
COMPARISON WITH BASELINE MODELS ON MPII VALIDATION SET. WE CHOOSE HRNET-W32-STEM∼STAGE3 AS THE BACKBONE, WHICH OUTPUTS

SHARED FEATURE PYRAMIDS WITH FOUR LEVELS FO FEATURE MAPS. INPUT SIZE IS 256× 256. OUR-C-CNF: P = 3, H = 2, C = 12. OUR-B-CNF:
P = 5, H = 1, C = 16. O INCLUDES ZERO, SKIP CONNECTION, 3× 3 SEPARABLE CONV, 3× 3 DILATED CONV WITH 2 RATE. HERE WE USE A 1 × 1

CONVOLUTION TO FIRST REDUCE THE FEATURE DIMENSION TO W = 400/296 AND THEN D = 8/8 SUBSEQUENT RESIDUAL BLOCKS FOR THE
BRANCHNETS OF BASELINE-1 AND BASELINE-2. † IS THE RESULT ACHIEVED BY RUNNING THE OFFICIAL CODE ON OUR MACHINE, THE OFFICIAL

RESULT IS 90.3 AP. ‡ REPRESENTS THE METRIC MEAN PCKH@0.5 OVER TEN HARD JOINTS, REPORTED IN [21].

Method Backbone Head NAS Part-specific Mean@0.5 Mean@0.1 #Params #FLOPs

SimpleBaseline [19] ResNet-152 (52.2M) DeConvs (16.4M) 7 7 89.6 35.0 68.6M 20.9G
HRNet-W32 [20] Stem∼stage3 (8.1M) Stage4(19.7M) 7 7 90.1† 37.7 27.8M 9.5G

Stacked PBNs [21] Stacked Hourglass Network Stacked Branchnets 7 ! 88.14‡ - 26.7M -

Baseline-1 Stem∼stage3 (8.1M) Branchnet × 3 (4.7M) 7 ! 89.0 38.2 12.8M 23.7G
Baseline-2 Stem∼stage3 (8.1M) Branchnet × 5 (4.5M) 7 ! 89.3 38.7 12.6M 22.8G

Random partition Stem∼stage3 (8.1M) CNF × 3 (4.8M) ! ! 81.0 30.5 12.9M 8.3G

Ours-c Stem∼stage3 (8.1M) CNF × 3 (4.8M) ! ! 89.9 39.5 12.9M 8.3G
Ours-b Stem∼stage3 (8.1M) CNF × 5 (8.3M) ! ! 90.1 39.4 16.4M 9.4G

serving as the subnetworks but not stack the whole module
repeatedly. We choose the ImageNet pretrained HRNet-W32
[20] as backbone by replacing blocks of the last stage, which
only retains 8.1M parameters. And then we make a comparison
between NAS-based CNFs and hand-designed Branchnets. By
controlling their parameters amount to be similar, we find
that using NAS to learn part-specific CNFs has achieved
significantly higher AP (89.9 vs. 89.0) and less FLOPs (8.3G
vs. 23.7G) than using a fixed structure for each part, as shown
in Tab VI.

With 16.4M model size and 9.4 GFLOPs, our model
achieves 90.1/39.4AP accuracy in PCKh@0.5/PCKh@0.1
metrics, in contrast to 90.3/37.7AP reported from [20] by
HRNet-W32 (28.5M, 9.5G FLOPs) in single-scale testing.
We can see that with obviously fewer parameters (↓58%)
compared with the stage4 block of HRNet, the searched CNFs
can maintain the high performance at PCKh@0.5 metric and
improve PCKh@0.1 metric performance significantly.

To validate whether the prior knowledge is significant to
help NAS search part-specific neural architectures, we make
a contrastive experiment by randomly partitioning keypoints
into three groups: 1) l-shouder, l-ankle, l-elbow, pelvis, r-wrist,

head-top; 2) upper-neck, r-knee, r-elbow, r-hip, l-wrist, throax;
3) l-hip, r-shoulder, l-knee, r-ankle. Such partitioned groups
can be seen as wrong knowledge of human body structure
or chaotic training signal. We use the same architecture
configurations as Ours-c model, with 12.9M parameters and
9.3 GFLOPs. The best accuracy in the training process is
only 81.0 AP and the model collapses at 120 epoch with
41.7 AP, as shown in Tab. VI. This result indicate that the
guidance of correct prior knowledge can help search higher-
performances neural architectures, but incorrect targets also
make NAS degenerate. We believe that the intervention of
appropriate domain knowledge would be significant for NAS
to search task-specific architectures.

b) Comparison with the Efficient Model: Fast human
pose distillation (FPD) [63] is an ideal efficient model to
compare. Though it uses knowledge distillation technique
rather than NAS, but to obtain the light-weight models is
the same goal for both methods. Specifically, it first trains
a large Teacher network, Houglass Network, to achieve a
high accuracy performance on the task-dataset. Then a small
Student model also taking Hourglass network as backbone
is trained by knowledge distillation. We show the trade-off

9

0 10 20 30 40
Inference complexity /GFLOPS (for a single sample)

(a)

84

85

86

87

88

89

90
m

AP
 /%

 (P
CK

h@
0.

5,
 M

PI
I v

al
)

SimpleBaseline(backbone:ResNet)
Fast Pose Distillation(backbone: Hourglass)
Ours(backbone:Unpretrained-CNF)
Ours(backbone:MobileNet-V2)
Ours(backbone:ResNet-50)
Ours(backbone:HRNet-W32-Stem~stage3)

0 10 20 30 40 50 60
Inference complexity /GFLOPS (for a single sample)

(b)

0.64

0.66

0.68

0.70

0.72

0.74

0.76

AP
(O

KS
, C

OC
O

te
st

-d
ev

)

Ours (PNFS)

HRNet

Simple Baseline

CPN
RMPE

G-RMI

Integral Pose Regression

Fig. 7. (a): The mAP of PCKh@0.5 metric vs. model inference complexity (GFLOPs) on MPII val set. (b): The AP of OKS@0.5:0.95 c vs. model inference
complexity (GFLOPs) on COCO test-dev2017 dataset. Model parameters and FLOPs of detecting persons in COCO dataset are not included. The areas of
the circles are linearly relative with the amounts of models’ parameters.

TABLE VII
COMPARISONS OF PERFORMANCE, MODEL PARAMETERS AND INFERENCE COMPLEXITY ON COCO TEST-DEV SET. MODEL PARAMETERS AND FLOPS
OF DETECTING PERSONS ARE NOT INCLUDED. THE BACKBONES OF OURS-1, OURS-2 AND OURS-3 MODELS ARE MOBILENET-V2 (1.3M), RESNET-50

(23.5M) AND HRNET-W32-STEM∼STAGE3 (8.1M).

AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL #Params #FLOPs
CMU-Pose [14] 0.618 0.849 0.675 0.571 0.682 - - - - - - -

Mask-RCNN [29] 0.631 0.873 0.687 0.578 0.714 - - - - - - -
Associative Embedding [33] 0.655 0.868 0.723 0.606 0.726 0.702 0.895 0.760 0.646 0.78 - -

Integral Pose Regression [64] 0.678 0.882 0.748 0.639 0.74 - - - - - 45.0M 11.0G
SJTU [16] 0.680 0.867 0.747 0.633 0.750 0.735 0.908 0.795 0.686 0.804 - -

G-RMI [15] 0.685 0.871 0.755 0.658 0.733 0.733 0.901 0.795 0.681 0.804 42.6M 57.0G
PersonLab [49] 0.687 0.890 0.754 0.641 0.755 0.754 0.927 0.812 0.697 0.830 - -

MultiPoseNet [32] 0.696 0.863 0.766 0.650 0.763 0.735 0.881 0.795 0.686 0.803 - -
CPN [18] 0.721 0.914 0.800 0.687 0.772 0.785 0.951 0.853 0.742 0.843 - -

SimpleBaseline(ResNet-50) [19] 0.702 0.909 0.783 0.671 0.759 0.758 - - - - 34M 8.9G
SimpleBaseline(ResNet-152) [19] 0.737 0.919 0.811 0.703 0.800 0.790 - - - - 68.6M 35.6G

HRNet-W32 [20] 0.749 0.925 0.828 0.713 0.809 0.801 - - - - 28.5M 16.0G
Ours-1 0.674 0.890 0.737 0.633 0.743 0.731 0.928 0.791 0.681 0.800 6.1M 4.0G
Ours-2 0.709 0.904 0.777 0.667 0.782 0.766 0.941 0.829 0.715 0.836 27.5M 11.4G
Ours-3 0.723 0.909 0.795 0.684 0.792 0.779 0.945 0.844 0.731 0.845 15.8M 14.8G

curves between AP and FLOPs in the (a) of Fig. 7. The results
show that both methods can achieve competitive performance
with less computing complexity for MPII dataset. Our smaller
models have a slight advantage over the smaller models of
FPD.

Pruning Useless Structures. In practical, we find that some
α, β architecture parameters of the final searched architectures
might be zero values. That is, cells whose outputs are multi-
plied by the zero β parameter have no computing contributions
for the cells in the next layers; operations whose outputs
are multiplied by the zero α parameter have no computing
contributions for the next hidden node. To further reduce
the parameters and computing complexity, we use empty
cells and zero operations without parameters to replace those
useless cells and operations. By this way, the architectures
only retain the structures associated with non-zero architecture
parameters. This method does not affect the precision and
also does not need to retrain the architecture. Note that our
NAS method cannot ensure there are always existing zero

values in the micro or macro architecture parameters. When we
cancel the learning rate decay of optimizing the architecture
parameters so that they remain sensitive to be optimized
in the late stage of the search process, we find that some
architecture parameters converge to zero values, i.e. some
types of operation or cells have no contributions to the forward
computing in some searched architectures. We expect that
future works can introduce sparse constraint to optimize the
architecture parameters, to guarantee the architecture could be
pruned by this way.

D. Comparison with the state-of-the-art

a) Testing on MPII Single Person Pose Estimation:
To further evaluate our pose estimation method on test set
of MPII [52], we train the model on all samples of MPII
train set with early-stopping strategy. All input images are
resized to 384 × 384 pixels, data augmentation is the same
as mentioned above. We use pretrained MobileNet-v2 and
HRNet-W32-Stem∼stage3 feature blocks as backbone. The

10

Fig. 8. Qualitative pose estimation results on MPII val set for single person pose estimation. We show the cropped image regions containing human body.

Fig. 9. Qualitative pose estimation results on COCO val2017 set. Estimation is conducted on bounding boxes detected by Faster-RCNN [65]. It is worth
noting that our method works well in some heavily partial occluded hard samples (such as left two images in first row and the fourth in second row).

hyperparameters are: P = 3/5, H = 2/1, d = 8/8, C =
10/16 and O includes zero, skip connection, 3× 3 separable
conv, 3×3 dilated conv with 2 rate. The optimization method
is synchronous optimization. As shown in Tab V, we achieve a
comparable result (91.0 vs. 91.1 AP and 9.4G vs. 9.0G FLOPs)
compared with FPD [63] that exploits knowledge distillation
to achieve a lightweight and efficient model.

b) COCO Keypoint Detection Task: MS-COCO [53]
dataset contains more than 200k images and 250k person
instances with keypoints label. We use COCO train2017 as
our training set, it consists of 57k images and 150k person
instances. Val2017 set contains 5k images and test-dev2017
consists of 20k images. It is worth mentioning that some
invisible keypoints are labeled on train set and statistics

show that around 11.3 % of annotated keypoints are invisible
according to train2017 annotations. Object keypoint similarity
(OKS) is the standard evaluation metric for keypoints locating
accuracy. More detailed information is available in COCO
official website 7.

COCO keypoint detection task involves detecting bodies
and localizing their keypoints. Based on top-down method, we
focus on single pose estimation, therefore we use the detected
bounding boxes detected by Faster-RCNN [65] with 60.9
AP persons detection results on COCO test-dev2017 dataset.
We respectively use pretrained MobileNet-v2 [57], ResNet-
50 [58] and HRNet-W32-Stem∼stage3 [20] feature blocks as

7http://cocodataset.org/

11

backbone and train two models only on train2017 set. The
hyperparameters are: P = 3/3/5, H = 1/1/1, d = 8/8/8
and O includes zero, skip connection, 3 × 3 separable conv,
3×3 dilated conv with 2 rate. C = 16/10/16 for ours-1/ours-
2/ours-3 models. The optimization method is synchronous
optimization, we cancel the learning rate decay for searching
the architecture parameters of ours-3 model, and prune it
as described in SectionIV-C0b. The input size is 384 × 288
pixels and the OKS-NMS algorithm [15] is utilized to suppress
redundant detected bounding boxes . We report average pre-
cision (AP) and average recall (AR) on COCO test-dev2017
set. With fewer parameters and low computational complexity,
we can achieve comparable results with some state-of-the-art
methods without using any extra data, ensemble models or
other training tricks, 76.2 AP (gt bbox) and 73.0 AP (detected
bbox) on COCO validation set and 72.3 AP on COCO test-
dev2017 set, as shown in Tab VII. This model runs at ∼20
FPS on a single GPU. The tendency of the trade-off curves
between the average precision (AP) and computational cost
(FLOPs) shown in the (b) of Fig. 7. can illustrate our model
can achieve comparable performances with many other state-
of-the-art methods [16], [18], [19]. Prediction results on some
partial occluded hard samples can be seen in Fig. 9.

In fact, our searched models are still over-parameterized, the
sizes of them also have a potential space to be further reduced
by pruning and other model compressing techniques. Large-
capacity models (e.g. >30M, >20GFLOPs) for COCO dataset
are not searched, limited by its huge resource consumption
caused by the gradient-based NAS search strategy. More
advanced neural search strategies can be explored to overcome
this problem in the future.

V. CONCLUSION

In this work, we presented a new paradigm - part-specific
neural architecture search for human pose estimation, in which
we made the first attempt to exploit prior knowledge of human
body structure to search part-specific neural architectures
automatically. Such paradigm develops the part-based method
and gives a new example as Multi-task Neural Architecture
Search. Experiment results showed that our light-weight mod-
els achieved comparable results on MPII dataset with fewer pa-
rameters and lower computational complexity than some state-
of-the-art methods. For more challenging COCO keypoint
detection task, our light-weight model attained comparable
results to some state-of-the-art methods with fewer parameters.
In addition, we empirically demonstrate the effectiveness of
representing the human body keypoints as vector entities at
image locations. We hope that these ideas may be helpful to
adequately leverage NAS to practical application for human
pose estimation task or other domains.

REFERENCES

[1] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[2] Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. International Conference on Learning Representations
(ICLR), 2017.

[3] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Nas-fpn: Learning
scalable feature pyramid architecture for object detection. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[4] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou,
Barret Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens. Searching
for efficient multi-scale architectures for dense image prediction. In
Advances in Neural Information Processing Systems (NeurIPS), pages
8699–8710, 2018.

[5] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8697–8710, 2018.

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[7] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. arXiv preprint
arXiv:1802.01548, 2018.

[8] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He.
Exploring randomly wired neural networks for image recognition. In The
IEEE International Conference on Computer Vision (ICCV), October
2019.

[9] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei
Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neural
architecture search for semantic image segmentation. arXiv preprint
arXiv:1901.02985, 2019.

[10] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic
neural architecture search. arXiv preprint arXiv:1812.09926, 2018.

[11] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi,
Xunying Liu, and Dahua Lin. Dsnas: Direct neural architecture search
without parameter retraining, 2020.

[12] Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In
Advances in Neural Information Processing Systems (NeurIPS), pages
4053–4061, 2016.

[13] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh.
Convolutional pose machines. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4724–4732,
2016.

[14] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7291–7299, 2017.

[15] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev,
Jonathan Tompson, Chris Bregler, and Kevin Murphy. Towards accurate
multi-person pose estimation in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4903–4911, 2017.

[16] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. Rmpe: Regional
multi-person pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2334–2343, 2017.

[17] Wei Yang, Shuang Li, Wanli Ouyang, Hongsheng Li, and Xiaogang
Wang. Learning feature pyramids for human pose estimation. In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 1281–1290, 2017.

[18] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang
Yu, and Jian Sun. Cascaded pyramid network for multi-person pose
estimation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7103–7112, 2018.

[19] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human
pose estimation and tracking. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 466–481, 2018.

[20] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-
resolution representation learning for human pose estimation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[21] Wei Tang and Ying Wu. Does learning specific features for related parts
help human pose estimation? In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[22] Rich Caruana. Multitask learning. In Encyclopedia of Machine Learning
and Data Mining, 1998.

[23] Sebastian Ruder. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

[24] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evolutionary
architecture search for deep multitask networks. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 466–473,
2018.

12

[25] Alejandro Newell, Lu Jiang, Chong Wang, Li-Jia Li, and Jia Deng.
Feature partitioning for efficient multi-task architectures. In arXiv
preprint arXiv: 1908.04339, 2019.

[26] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-
nas: Task-agnostic neural architecture search towards general-purpose
multi-task learning. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11543–11552, 2020.

[27] Xiao Chu, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Struc-
tured feature learning for pose estimation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[28] Sijin Li, Zhi-Qiang Liu, and Antoni B Chan. Heterogeneous multi-
task learning for human pose estimation with deep convolutional neural
network. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 482–489, 2014.

[29] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-
cnn. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2961–2969, 2017.

[30] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo An-
driluka, and Bernt Schiele. Deepercut: A deeper, stronger, and faster
multi-person pose estimation model. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 34–50. Springer, 2016.

[31] Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang,
Evgeny Levinkov, Bjoern Andres, and Bernt Schiele. Arttrack: Artic-
ulated multi-person tracking in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6457–6465, 2017.

[32] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Multiposenet:
Fast multi-person pose estimation using pose residual network. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 417–433, 2018.

[33] Alejandro Newell, Zhiao Huang, and Jia Deng. Associative embedding:
End-to-end learning for joint detection and grouping. In Advances in
Neural Information Processing Systems (NeurIPS), pages 2277–2287,
2017.

[34] Vasileios Belagiannis and Andrew Zisserman. Recurrent human pose
estimation. In 2017 12th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2017), pages 468–475. IEEE, 2017.

[35] Wei Tang, Pei Yu, and Ying Wu. Deeply learned compositional models
for human pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 190–206, 2018.

[36] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei. Composi-
tional human pose regression. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2602–2611, 2017.

[37] Elie Bienenstock, Stuart Geman, and Daniel Potter. Compositionality,
mdl priors, and object recognition. In Advances in Neural Information
Processing Systems (NeurIPS), pages 838–844, 1997.

[38] Pedro F Felzenszwalb, David A McAllester, and Deva Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, page 7, 2008.

[39] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Pictorial structures
revisited: People detection and articulated pose estimation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1014–1021. IEEE, 2009.

[40] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures
for object recognition. International Journal of Computer Vision (IJCV),
61(1):55–79, 2005.

[41] Seyoung Park, Bruce Xiaohan Nie, and Song-Chun Zhu. Attribute and-
or grammar for joint parsing of human pose, parts and attributes. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
40(7):1555–1569, 2017.

[42] Min Sun and Silvio Savarese. Articulated part-based model for joint
object detection and pose estimation. In 2011 International Conference
on Computer Vision (ICCV), pages 723–730. IEEE, 2011.

[43] Lin Zhao, Xinbo Gao, Dacheng Tao, and Xuelong Li. Tracking human
pose using max-margin markov models. IEEE Transactions on Image
Processing (TIP), 24(12):5274–5287, Dec 2015.

[44] Xuecheng Nie, Jiashi Feng, Junliang Xing, Shengtao Xiao, and
Shuicheng Yan. Hierarchical contextual refinement networks for hu-
man pose estimation. IEEE Transactions on Image Processing (TIP),
28(2):924–936, Feb 2019.

[45] Yi Yang and Deva Ramanan. Articulated human detection with flexible
mixtures of parts. IEEE transactions on pattern analysis and machine
intelligence (TPAMI), 35(12):2878–2890, 2012.

[46] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler.
Joint training of a convolutional network and a graphical model for

human pose estimation. In Advances in Neural Information Processing
Systems (NeurIPS), pages 1799–1807, 2014.

[47] Yu Chen, Chunhua Shen, Xiu-Shen Wei, Lingqiao Liu, and Jian Yang.
Adversarial posenet: A structure-aware convolutional network for human
pose estimation. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 1212–1221, 2017.

[48] Lipeng Ke, Ming-Ching Chang, Honggang Qi, and Siwei Lyu. Multi-
scale structure-aware network for human pose estimation. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages
713–728, 2018.

[49] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris,
Jonathan Tompson, and Kevin Murphy. Personlab: Person pose estima-
tion and instance segmentation with a bottom-up, part-based, geometric
embedding model. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[50] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules
with EM routing. In International Conference on Learning Representa-
tions, 2018.

[51] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing
between capsules. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3856–3866, 2017.

[52] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt
Schiele. 2d human pose estimation: New benchmark and state of the art
analysis. In Proceedings of the IEEE Conference on computer Vision
and Pattern Recognition (CVPR), pages 3686–3693, 2014.

[53] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European conference on computer
vision (ECCV), pages 740–755. Springer, 2014.

[54] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Research (JMLR),
13(Feb):281–305, 2012.

[55] Liam Li and Ameet Talwalkar. Random search and reproducibility for
neural architecture search. arXiv preprint arXiv:1902.07638, 2019.

[56] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision (IJCV), 115(3):211–
252, 2015.

[57] Mark B. Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmogi-
nov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4510–4520, 2018.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[59] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[61] Adrian Bulat and Georgios Tzimiropoulos. Human pose estimation via
convolutional part heatmap regression. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 717–732. Springer,
2016.

[62] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass
networks for human pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 483–499. Springer,
2016.

[63] Feng Zhang, Xiatian Zhu, and Mao Ye. Fast human pose estimation. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3512–3521, 2019.

[64] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen Wei.
Integral human pose regression. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 529–545, 2018.

[65] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems (NeurIPS), pages
91–99, 2015.

13

APPENDIX A
EXPLANATION FOR THE RELATIONSHIP BETWEEN

EXPECTED ‖~v‖ AND SUPERVISION LEVEL p

In the section III-D, we use Squash Function to normalize
~v to ~vs whose length ranges in [0, 1),

~vs =
‖~v‖2

1 + ‖~v‖2
~v

‖~v‖
, (8)

‖~vs‖ =
‖~v‖2

1 + ‖~v‖2
, (9)

‖~v‖ =

√
1

1− ‖~vs‖
− 1, (10)

where ‖~vs‖ is supervised by numerical value p in each pixel
position from groundtruth score maps. Ideal value of ‖~vs‖
, denoted as ‖~v∗‖, equals to c ∈ [0, 1). Therefore, ‖~v‖ is
supervised by

√
1

1−c − 1.
Intuition and Explanation. The extra advantage of vec-

tor in pixel is that ambiguity between image feature and
groundtruth position can be reduced in some cases of oc-
clusion. In supervised learning, the difficulty of fitting label
is usually not under consideration, hard or easy samples of
the same category receive the same level of supervision.
This issue occurs in keypoints localization because image
appearance varies dramatically in some partially occluded
and non-occluded areas. Once the area within the keypoint
groundtruth position is occluded, the image feature around the
keypoint will be disturbed, (e.g. the first image in the Fig. 9,
the man’s ankle is occluded by a dog, but his ankle’s position
is labeled), as a result it becomes hard to force the network
to predict high confidence to match the strong supervision.
In such case, our method can handle it as ‖~vs‖ replaces ‖~v‖
under supervision (element value of each dimension of vector
has no explicit property and is unsupervised) and the expected
length for ~v in groundtruth keypoint pixel is not directly
supervised by numerical value c from groundtruth score but
supervised by

√
1

1−c − 1 ∈ [0,+∞) where c ∈ [0, 1). In a
slight abuse of notation, we write ‖~v∗‖ as the expected length
of ~v, which provides a relatively loose range space for ~v, even
if under strong supervision.

APPENDIX B
MOBLIENET-V2 BACKBONE ARCHITECTURE DETAILS

A. CNF Backbone Architecture Details

B. MoblieNet-V2 Backbone Architecture Details

TABLE VIII
THE DETAILED CONFIGURATIONS FOR FABRIC-1,2,3. THE LAYERS

RESERVED MEANS THE NUMBER OF LAYERS RESERVED BY DISCARDING
THE IN THE LATTER LAYERS OF CNF

- Fabric-1 Fabric-2 Fabric-3

L 7 8 8
C 10 10 12
H 2 1 1

Layers reserved 3 5 5
Number of Cells 9 17 17

TABLE IX
GIVEN A H ×W × 3 RGB IMAGE, THE LAYER OF MOBILENET-V2

BACKBONE. EACH LINE DESCRIBES A SEQUENCE OF 1 OR MORE
IDENTICAL (MODULO STRIDE) LAYERS, REPEATED N TIMES. ALL LAYERS

IN THE SAME SEQUENCE HAVE THE SAME NUMBER C OF OUTPUT
CHANNELS. THE FIRST LAYER OF EACH SEQUENCE HAS A STRIDE S AND

ALL OTHERS USE STRIDE 1. THE EXPANSION FACTOR T IS ALWAYS
APPLIED TO THE INPUT SIZE. P1∼P4 ARE TAKEN AS THE FEATURE

PYRAMIDS THAT ARE SEND TO EACH CNF. SEE MORE CONFIGURATIONS
IN THE PAPER [57]

Input Size Operator t c n s

H ×W × 3 conv2d - 32 1 2
H
2
× W

2
× 32 bottleneck 1 16 1 1

H
2
× W

2
× 16 bottleneck 6 24 2 2

H
4
× W

4
× 24 → P1 bottleneck 6 32 3 2

H
8
× W

8
× 32 bottleneck 6 64 4 2

H
8
× W

8
× 64 → P2 bottleneck 6 96 3 1

H
16
× W

16
× 96 → P3 bottleneck 6 160 3 2

H
32
× W

32
× 160 → P4 - - - - -

